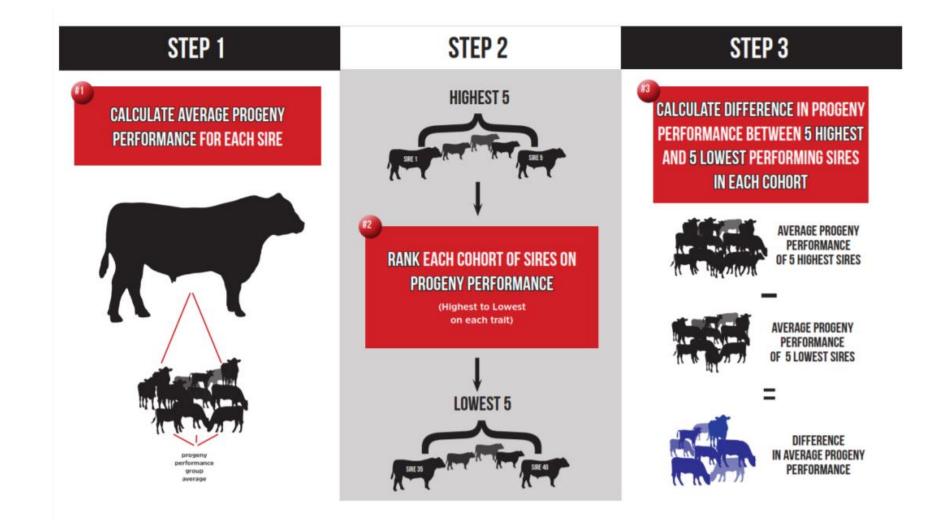
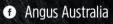
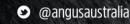
Jessons from the Angus Sire

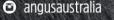
Angus Sire Benchmarking Program


CAPITALISING ON THE GENETIC VARIATION BETWEEN ANGUS ANIMALS

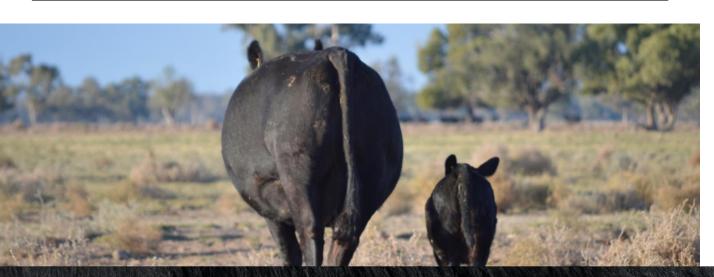
How much genetic variation exists between Angus Animals?



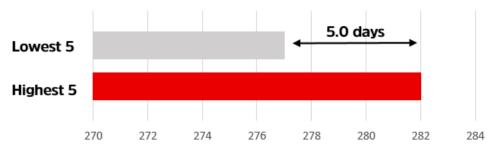




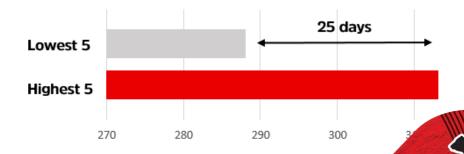
There is a significant amount of genetic variation between animals within the Angus population



Variation in Fertility Traits

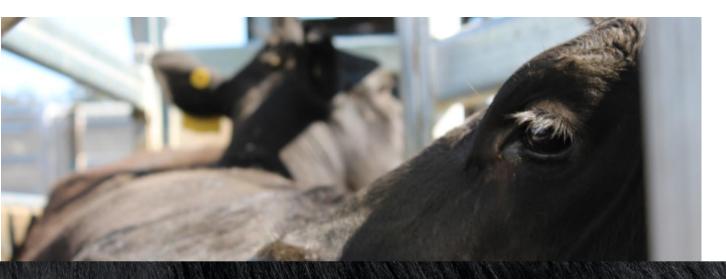

Table 1 : Difference between average progeny performance of highest five and lowest five performing sires for birth and maternal traits

	Birth Weight	Gestation Length	Days to Calving
Cohort 5	4.9 kg	5.7 days	21 days
Cohort 6	4.6 kg	5.3 days	18 days
Cohort 7	3.8 kg	4.0 days	37 days
Average	4.4 kg	5.0 days	25 days



Lowest 5 Highest 5

Difference in Gestation Length


Difference in Days to Calving

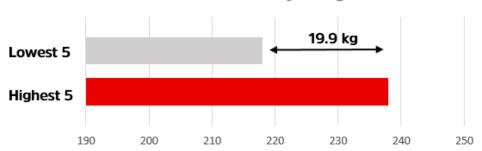
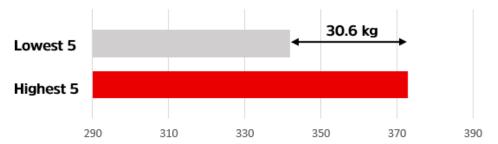
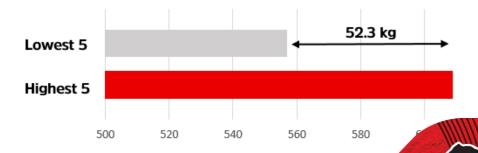
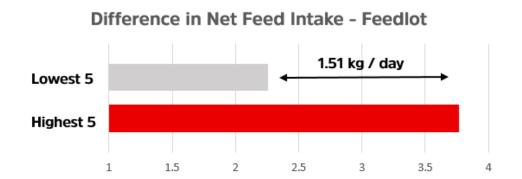

Variation in Growth Traits

Table 2: Difference between average progeny performance of highest five and lowest five performing sires for growth traits (200, 400 and 600 days)


	200 Day Weight	400 Day Weight	600 Day Weight
Cohort 5	22.8 kg	32.7 kg	61.1 kg
Cohort 6	18.0 kg	28.4 kg	49.8 kg
Cohort 7	19.0 kg	30.8 kg	46.2 kg
Average	19.9 kg	30.6 kg	52.3 kg


Difference in 200 Day Weight

Difference in 400 Day Weight

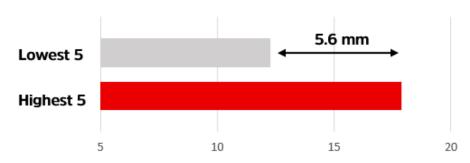

Difference in 600 Day Weight

Variation in Net Feed Intake

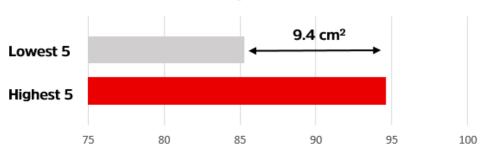
Table 3 : Difference between average progeny performance of highest five and lowest five performing sires for Net Feed Intake - Feedlot

	Net Feed Intake - Feedlot	
Cohort 5	1.56 kg/day	
Cohort 6	1.72 kg/day	
Cohort 7	1.24 kg/day	
Average	1.51 kg/day	

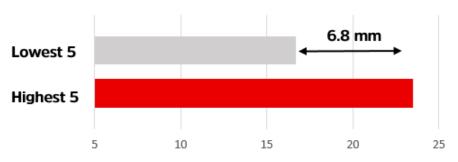
Variation in Carcase Composition

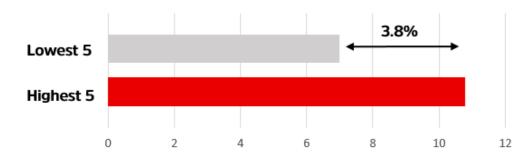

Table 4 : Difference between average progeny performance of highest five and lowest five performing sires for Carcase Composition Traits (Carcase Weight, Eye Muscle Area, Intramuscular Fat, Rib Fat, Rump Fat)

	Carcase Weight	Carcase EMA	Carcase IMF	Carcase Rib Fat	Carcase Rump
Cohort 5	48.3 kg	10.9 cm ²	3.8 %	7.8 mm	7.4 mm
Cohort 6	50.5 kg	10.6 cm ²	4.2 %	4.4 mm	5.7 mm
Cohort 7	40.4 kg	6.7 cm ²	3.5 %	4.6 mm	7.3 mm
Average	46.4 kg	9.4 cm²	3.8 %	5.6 mm	6.8 mm



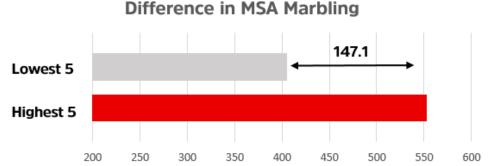
Difference in Carcase Weight Lowest 5 Highest 5 350 370 390 410 430 450 470

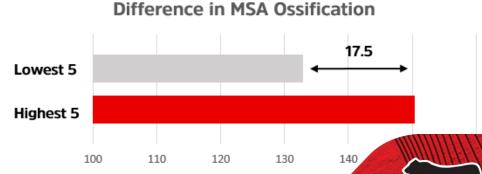

Difference in Carcase Rib Fat



Difference in Carcase Rump Fat

Difference in Intramuscular Fat


Variation in Carcase Quality


Table 5 : Difference between average progeny performance of highest five and lowest five performing sires for Carcase Quality traits

	MSA Index	MSA Marbling	MSA Ossification
Cohort 5	2.5	154.6	20.8
Cohort 6	2.2	148.2	16.4
Cohort 7	2.0	138.5	15.4
Average	2.2	147.1	17.5

Lowest 5 Highest 5

There is a significant amount of genetic variation between animals within the Angus population

This variation presents an opportunity to improve the productivity and profitability of Angus enterprises by utilising better genetics

Enhancing & Promoting the value of Angus

Search for an animal by ID.

e.g. ABCZ123

HOW DO YOU **REALLY KNOW** IT'S ANGUS

ABOUT * NEWS & EVENTS * MEMBERS * REGISTRATIONS * TACE * BREEDING * ANGUS.TECH MARKETING * EXPORT * SIRE BENCHMARKING * ANGUS BEEF BRANDS * YOUTH

ABOUT

General Information

Consultative Committee

Bull Nominations

SIRE COHORTS

First Cohort

Second Cohort

Third Cohort

Fourth Cohort

Fifth Cohort

Sixth Cohort

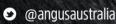
Seventh Cohort

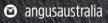
Eighth Cohort

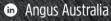
Ninth Cohort

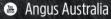
LESSONS FROM THE ASBP

Project Overview


Capitalising on genetic variation


EBVs reliably predict progeny performa


Starting vs. Finishing EBVs


Individual Sire EBV Changes

CLICK HERE

Angus Australia gratefully acknowledges the co-funding contribution of the Meat & Livestock Australia Donor Company

www.angusaustralia.com.au

- Angus Australia
- @angusaustralia
- angusaustralia
- Angus Australia
- Angus Australia